Print `numpy.ndarray` on a single line(在一行上打印 `numpy.ndarray`)
问题描述
在使用 scipy/numpy 时,我确实获得了存储在 numpy.ndarray
While using scipy/numpy, I do get information that I store into a numpy.ndarray
>>> a
array([[ 0.15555605, 0.51031528, 0.84580176, 0.06722675],
[ 0.60556045, 0.62721023, -0.48979983, -0.04152777],
[-0.78044785, 0.58837543, -0.21146041, -0.13568023],
[ 0. , 0. , 0. , 1. ]])
>>> print(a)
[[ 0.15555605 0.51031528 0.84580176 0.06722675]
[ 0.60556045 0.62721023 -0.48979983 -0.04152777]
[-0.78044785 0.58837543 -0.21146041 -0.13568023]
[ 0. 0. 0. 1. ]]
如何将结果打印在一行上?
How can I print the result on a single line?
我已经检查过了:
>>> numpy.get_printoptions()
{'precision': 8, 'threshold': 1000, 'edgeitems': 3, 'linewidth': 75, 'suppress': False, 'nanstr': 'nan', 'infstr': 'inf', 'formatter': None}
但即使将 linewidth
设置为 1000 也不会改变这一点.有没有办法改变该类型的显示格式?
But even setting linewidth
to 1000 does no change this. Is there a way to change the displayed format of that type?
是否也可以在每个数字之间添加逗号(如数组显示但没有周围的 array(...)
)?
Is it also possible to add comma in between each number (like the array display but without the surrounding array(...)
)?
推荐答案
为了将 numpy.array
打印成单行,您可以使用其内置函数将其转换为列表numpy.tolist()
In order to print a numpy.array
into a single line, you can convert it to a list with its built-in function numpy.tolist()
例子:
import numpy as np
arr = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
数组的简单打印:
print(arr)
[[1, 2, 3]
[4, 5, 6]
[7, 8, 9]]
与 numpy.tolist()
相比:
print(array.tolist())
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
这篇关于在一行上打印 `numpy.ndarray`的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:在一行上打印 `numpy.ndarray`


- python check_output 失败,退出状态为 1,但 Popen 适用于相同的命令 2022-01-01
- 分析异常:路径不存在:dbfs:/databricks/python/lib/python3.7/site-packages/sampleFolder/data; 2022-01-01
- 如何在 Python 的元组列表中对每个元组中的第一个值求和? 2022-01-01
- 如何在 python3 中将 OrderedDict 转换为常规字典 2022-01-01
- pytorch 中的自适应池是如何工作的? 2022-07-12
- 沿轴计算直方图 2022-01-01
- 使用Heroku上托管的Selenium登录Instagram时,找不到元素';用户名'; 2022-01-01
- 如何将一个类的函数分成多个文件? 2022-01-01
- padding='same' 转换为 PyTorch padding=# 2022-01-01
- python-m http.server 443--使用SSL? 2022-01-01