Duplicate entries and rename column row in pandas pivot table without aggregation(在没有聚合的 pandas 数据透视表中重复条目并重命名列行)
问题描述
我正在尝试将这个示例数据框从长格式改成宽格式,而不聚合任何数据.
I'm trying to reshape this sample dataframe from long to wide format, without aggregating any of the data.
import numpy as np
import pandas as pd
df = pd.DataFrame({'SubjectID': ['A', 'A', 'A', 'B', 'B', 'C', 'A'], 'Date':
['2010-03-14', '2010-03-15', '2010-03-16', '2010-03-14', '2010-05-15',
'2010-03-14', '2010-03-14'], 'Var1': [1 , 12, 4, 7, 90, 1, 9], 'Var2': [ 0,
0, 1, 1, 1, 0, 1], 'Var3': [np.nan, 1, 0, np.nan, 0, 1, np.nan]})
df['Date'] = pd.to_datetime(df['Date']); df
Date SubjectID Var1 Var2 Var3
0 2010-03-14 A 1 0 NaN
1 2010-03-15 A 12 0 1.0
2 2010-03-16 A 4 1 0.0
3 2010-03-14 B 7 1 NaN
4 2010-05-15 B 90 1 0.0
5 2010-03-14 C 1 0 1.0
6 2010-03-14 A 9 1 NaN
为了避免重复值,我按 "Date"
列进行分组并获取每个值的累积计数.然后我做一个数据透视表
To get around the duplicate values, I'm grouping by the "Date"
column and getting the cumulative count for each value. Then I make a pivot table
df['idx'] = df.groupby('Date').cumcount()
dfp = df.pivot_table(index = 'SubjectID', columns = 'idx'); dfp
Var1 Var2 Var3
idx 0 1 2 3 0 1 2 3 0 2
SubjectID
A 5.666667 NaN NaN 9.0 0.333333 NaN NaN 1.0 0.5 NaN
B 90.000000 7.0 NaN NaN 1.000000 1.0 NaN NaN 0.0 NaN
C NaN NaN 1.0 NaN NaN NaN 0.0 NaN NaN 1.0
但是,我希望 idx
列索引是 "Date"
列中的值,并且我不想聚合任何数据.预期的输出是
However, I want the idx
column index to be the values from the "Date"
column and I don't want to aggregate any data. The expected output is
Var1_2010-03-14 Var1_2010-03-14 Var1_2010-03-15 Var1_2010-03-16 Var1_2010-05-15 Var2_2010-03-14 Var2_2010-03-15 Var2_2010-03-16 Var2_2010-05-15 Var3_2010-03-14 Var3_2010-03-15 Var3_2010-03-16 Var3_2010-05-15
SubjectID
A 1 9 12 4 NaN 0 1 0 1.0 NaN NaN NaN 1.0 0.0 NaN
B 7.0 NaN NaN NaN 90 1 NaN NaN 1.0 NaN NaN NaN NaN NaN 0.0
C 1 NaN NaN NaN NaN 0 NaN NaN NaN NaN 1.0 NaN NaN NaN NaN
我该怎么做?最后,我将通过 dfp.columns = [col[0]+ '_' + str(col[1]) for col in dfp.columns]
合并两个列索引.
How can I do this? Eventually, I'll merge the two column indexes by dfp.columns = [col[0]+ '_' + str(col[1]) for col in dfp.columns]
.
推荐答案
你在正确的道路上:
# group
df['idx'] = df.groupby('Date').cumcount()
# set index and unstack
new = df.set_index(['idx','Date', 'SubjectID']).unstack(level=[0,1])
# drop idx column
new.columns = new.columns.droplevel(1)
new.columns = [f'{val}_{date}' for val, date in new.columns]
我认为这是您的预期输出
I think this is your expected output
使用map
貌似会快一点:
df['idx'] = df.groupby('Date').cumcount()
df['Date'] = df['Date'].astype(str)
new = df.set_index(['idx','Date', 'SubjectID']).unstack(level=[0,1])
new.columns = new.columns.droplevel(1)
#new.columns = [f'{val}_{date}' for val, date in new.columns]
new.columns = new.columns.map('_'.join)
这是一个 50,000 行的测试示例:
Here is a 50,000 row test example:
#data
data = pd.DataFrame(pd.date_range('2000-01-01', periods=50000, freq='D'))
data['a'] = list('abcd')*12500
data['b'] = 2
data['c'] = list('ABCD')*12500
data.rename(columns={0:'date'}, inplace=True)
# list comprehension:
%%timeit -r 3 -n 200
new = data.set_index(['a','date','c']).unstack(level=[0,1])
new.columns = new.columns.droplevel(0)
new.columns = [f'{x}_{y}' for x,y in new.columns]
# 98.2 ms ± 13.3 ms per loop (mean ± std. dev. of 3 runs, 200 loops each)
# map with join:
%%timeit -r 3 -n 200
data['date'] = data['date'].astype(str)
new = data.set_index(['a','date','c']).unstack(level=[0,1])
new.columns = new.columns.droplevel(0)
new.columns = new.columns.map('_'.join)
# 84.6 ms ± 3.87 ms per loop (mean ± std. dev. of 3 runs, 200 loops each)
这篇关于在没有聚合的 pandas 数据透视表中重复条目并重命名列行的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:在没有聚合的 pandas 数据透视表中重复条目并重命


- 使用Heroku上托管的Selenium登录Instagram时,找不到元素';用户名'; 2022-01-01
- 如何将一个类的函数分成多个文件? 2022-01-01
- 如何在 Python 的元组列表中对每个元组中的第一个值求和? 2022-01-01
- python-m http.server 443--使用SSL? 2022-01-01
- 沿轴计算直方图 2022-01-01
- 如何在 python3 中将 OrderedDict 转换为常规字典 2022-01-01
- python check_output 失败,退出状态为 1,但 Popen 适用于相同的命令 2022-01-01
- pytorch 中的自适应池是如何工作的? 2022-07-12
- 分析异常:路径不存在:dbfs:/databricks/python/lib/python3.7/site-packages/sampleFolder/data; 2022-01-01
- padding='same' 转换为 PyTorch padding=# 2022-01-01