Filling empty python dataframe using loops(使用循环填充空的python数据框)
问题描述
假设我想用循环中的值创建并填充一个空数据框.
Lets say I want to create and fill an empty dataframe with values from a loop.
import pandas as pd
import numpy as np
years = [2013, 2014, 2015]
dn=pd.DataFrame()
for year in years:
    df1 = pd.DataFrame({'Incidents': [ 'C', 'B','A'],
                 year: [1, 1, 1 ],
                }).set_index('Incidents')
    print (df1)
    dn=dn.append(df1, ignore_index = False)
即使忽略索引为假,追加也会给出对角矩阵:
The append gives a diagonal matrix even when ignore index is false:
>>> dn
       2013  2014  2015
Incidents                  
C             1   NaN   NaN
B             1   NaN   NaN
A             1   NaN   NaN
C           NaN     1   NaN
B           NaN     1   NaN
A           NaN     1   NaN
C           NaN   NaN     1
B           NaN   NaN     1
A           NaN   NaN     1
[9 rows x 3 columns]
应该是这样的:
>>> dn
       2013  2014  2015
Incidents                  
C             1   1   1
B             1   1   1
A             1   1   1
[3 rows x 3 columns]
有没有更好的方法来做到这一点?有没有办法修复附加?
Is there a better way of doing this? and is there a way to fix the append?
我有熊猫版本'0.13.1-557-g300610e'
I have pandas version '0.13.1-557-g300610e'
推荐答案
import pandas as pd
years = [2013, 2014, 2015]
dn = []
for year in years:
    df1 = pd.DataFrame({'Incidents': [ 'C', 'B','A'],
                 year: [1, 1, 1 ],
                }).set_index('Incidents')
    dn.append(df1)
dn = pd.concat(dn, axis=1)
print(dn)
产量
           2013  2014  2015
Incidents                  
C             1     1     1
B             1     1     1
A             1     1     1
<小时>
请注意,在循环外调用 pd.concat once 更省时而不是在循环的每次迭代中调用 pd.concat.
Note that calling pd.concat once outside the loop is more time-efficient
than calling pd.concat with each iteration of the loop.
每次调用 pd.concat 都会为新的 DataFrame 分配新空间,并且每个组件 DataFrame 中的所有数据都被复制到新的 DataFrame 中.如果你从 for 循环中调用 pd.concat 然后你最终在订单上做n**2 个副本,其中 n 是年数.
Each time you call pd.concat new space is allocated for a new DataFrame, and
all the data from each component DataFrame is copied into the new DataFrame.  If
you call pd.concat from within the for-loop then you end up doing on the order
of n**2 copies, where n is the number of years.
如果您将部分 DataFrames 累积在一个列表中并调用一次 pd.concat在列表之外,那么 Pandas 只需要执行 n 个副本即可制作 dn.
If you accumulate the partial DataFrames in a list and call pd.concat once
outside the list, then Pandas only needs to perform n copies to make dn.
这篇关于使用循环填充空的python数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:使用循环填充空的python数据框
				
        
 
            
        - 如何使用PYSPARK从Spark获得批次行 2022-01-01
 - 我如何卸载 PyTorch? 2022-01-01
 - YouTube API v3 返回截断的观看记录 2022-01-01
 - CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01
 - 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
 - 计算测试数量的Python单元测试 2022-01-01
 - ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01
 - 使用 Cython 将 Python 链接到共享库 2022-01-01
 - 我如何透明地重定向一个Python导入? 2022-01-01
 - 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01
 
