Pandas - group by column and transform the data to numpy array(Pandas - 按列分组并将数据转换为 numpy 数组)
问题描述
Having the following data frame, group A have 4 samples, B 3 samples and C 1 sample:
group data_1 data_2
0 A 1 4
1 A 2 5
2 A 3 6
3 A 4 7
4 B 1 4
5 B 2 5
6 B 3 6
7 C 1 4
I would like to transform the data into numpy array, where each row is a group with all its samples and zero padding for groups that have fewer samples.
Resulting in an array like so:
[
[[1,4],[2,5],[3,6],[4,7]], # this is A group 4 samples
[[1,4],[2,5],[3,6],[0,0]], # this is B group 3 samples
[[1,4],[0,0],[0,0],[0,0]], # this is C group 1 sample
]
First is necessary add missing values - first solution with unstack and stack, counter Series is created by cumcount.
Second solution use reindex by MultiIndex.
Last use lambda function with groupby, convert to numpy array by values and last to lists:
g = df.groupby('group').cumcount()
L = (df.set_index(['group',g])
.unstack(fill_value=0)
.stack().groupby(level=0)
.apply(lambda x: x.values.tolist())
.tolist())
print (L)
[[[1, 4], [2, 5], [3, 6], [4, 7]],
[[1, 4], [2, 5], [3, 6], [0, 0]],
[[1, 4], [0, 0], [0, 0], [0, 0]]]
Another solution:
g = df.groupby('group').cumcount()
mux = pd.MultiIndex.from_product([df['group'].unique(), g.unique()])
L = (df.set_index(['group',g])
.reindex(mux, fill_value=0)
.groupby(level=0)['data_1','data_2']
.apply(lambda x: x.values.tolist())
.tolist()
)
这篇关于Pandas - 按列分组并将数据转换为 numpy 数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
本文标题为:Pandas - 按列分组并将数据转换为 numpy 数组
- 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01
- 如何使用PYSPARK从Spark获得批次行 2022-01-01
- CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01
- YouTube API v3 返回截断的观看记录 2022-01-01
- ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01
- 使用 Cython 将 Python 链接到共享库 2022-01-01
- 计算测试数量的Python单元测试 2022-01-01
- 我如何透明地重定向一个Python导入? 2022-01-01
- 我如何卸载 PyTorch? 2022-01-01
- 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
