What is Adaptive average pooling and How does it work?(什么是自适应平均池,它是如何工作的?)
本文介绍了什么是自适应平均池,它是如何工作的?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
最近,当我尝试实现AlexNet时,我在Pytorch中遇到了一个方法。 我不明白它是怎么运作的。请举几个例子解释一下背后的想法。在神经网络功能方面,它与Maxpooling或Average Poling有何不同
nn.AdaptiveAvgPool2d((6,6))
推荐答案
在平均池化或最大池化中,基本上由您自己设置步长和内核大小,并将它们设置为超参数。如果您碰巧更改了输入大小,则必须重新配置它们。
另一方面,在自适应池中,我们改为指定输出大小。并自动选择步长和内核大小以适应需要。以下公式用于计算源代码中的值。Stride = (input_size//output_size)
Kernel size = input_size - (output_size-1)*stride
Padding = 0
这篇关于什么是自适应平均池,它是如何工作的?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持编程学习网!
沃梦达教程
本文标题为:什么是自适应平均池,它是如何工作的?


猜你喜欢
- ";find_element_by_name(';name';)";和&QOOT;FIND_ELEMENT(BY NAME,';NAME';)";之间有什么区别? 2022-01-01
- 计算测试数量的Python单元测试 2022-01-01
- 使用 Cython 将 Python 链接到共享库 2022-01-01
- 检查具有纬度和经度的地理点是否在 shapefile 中 2022-01-01
- YouTube API v3 返回截断的观看记录 2022-01-01
- 我如何透明地重定向一个Python导入? 2022-01-01
- 使用公司代理使Python3.x Slack(松弛客户端) 2022-01-01
- 如何使用PYSPARK从Spark获得批次行 2022-01-01
- 我如何卸载 PyTorch? 2022-01-01
- CTR 中的 AES 如何用于 Python 和 PyCrypto? 2022-01-01