这篇文章主要介绍了如何使用MATLAB绘制散点密度图(二维核密度),文中的示例代码讲解详细,对我们学习Matlab有一定帮助,需要的可以参考一下
效果
原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可
为了怕大家找不到函数这次工具函数放到最前面
1工具函数完整代码
function [CData,h,XMesh,YMesh,ZMesh,colorList]=density2C(X,Y,XList,YList,colorList)
[XMesh,YMesh]=meshgrid(XList,YList);
XYi=[XMesh(:) YMesh(:)];
F=ksdensity([X,Y],XYi);
ZMesh=zeros(size(XMesh));
ZMesh(1:length(F))=F;
h=interp2(XMesh,YMesh,ZMesh,X,Y);
if nargin<5
colorList=[0.2700 0 0.3300
0.2700 0.2300 0.5100
0.1900 0.4100 0.5600
0.1200 0.5600 0.5500
0.2100 0.7200 0.4700
0.5600 0.8400 0.2700
0.9900 0.9100 0.1300];
end
colorFunc=colorFuncFactory(colorList);
CData=colorFunc((h-min(h))./(max(h)-min(h)));
colorList=colorFunc(linspace(0,1,100)');
function colorFunc=colorFuncFactory(colorList)
x=(0:size(colorList,1)-1)./(size(colorList,1)-1);
y1=colorList(:,1);y2=colorList(:,2);y3=colorList(:,3);
colorFunc=@(X)[interp1(x,y1,X,'pchip'),interp1(x,y2,X,'pchip'),interp1(x,y3,X,'pchip')];
end
end
2参数说明
输入:
- X,Y 散点坐标
- XList,YList 用来构造密度曲面网格的序列,其实就是把XLim,YLim分成小份,例如XList=0:0.1:10
- colorList 颜色表mx3数组,用来构造将高度映射到颜色函数的数据表
输出:
- CData各个点对应颜色
- h 各个点对应核密度
- XMesh,YMesh,ZMesh 核密度曲面数据
- colorList 插值后更细密的颜色表
3使用方式
假如编写了如下程序:
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
scatter(PntSet(:,1),PntSet(:,2),'filled');
结果:
3.1散点赋色
将上面那段代码改写
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);
3.2等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)
3.3带直方图的散点图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
colorList=[0.9400 0.9700 0.9600
0.8900 0.9300 0.9200
0.8200 0.9100 0.8800
0.6900 0.8500 0.7700
0.5900 0.7800 0.6900
0.5500 0.7500 0.6500
0.4500 0.6500 0.5600
0.4000 0.5800 0.4900
0.3500 0.5100 0.4200
0.2500 0.3600 0.3100
0.1300 0.1700 0.1400];
CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15,colorList);
set(gcf,'Color',[1 1 1]);
% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
scatter(ax1,PntSet(:,1),PntSet(:,2),'filled','CData',CData);
ax1.Position=[0.1,0.1,0.6,0.6];
% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
histogram(ax2,PntSet(:,1),'FaceColor',[0.78 0.88 0.82],...
'EdgeColor','none','FaceAlpha',0.7)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;
% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
histogram(ax3,PntSet(:,2),'FaceColor',[0.78 0.88 0.82],...
'EdgeColor','none','FaceAlpha',0.7,'Orientation','horizontal')
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;
3.4带直方图的等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
colorList=[0.9300 0.9500 0.9700
0.7900 0.8400 0.9100
0.6500 0.7300 0.8500
0.5100 0.6200 0.7900
0.3700 0.5100 0.7300
0.2700 0.4100 0.6300
0.2100 0.3200 0.4900
0.1500 0.2200 0.3500
0.0900 0.1300 0.2100
0.0300 0.0400 0.0700];
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:13,-2:0.1:13,colorList);
set(gcf,'Color',[1 1 1]);
% 主分布图
ax1=axes('Parent',gcf);hold(ax1,'on')
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10,'EdgeColor','none')
ax1.Position=[0.1,0.1,0.6,0.6];
ax1.TickDir='out';
% X轴直方图
ax2=axes('Parent',gcf);hold(ax2,'on')
[f,xi]=ksdensity(PntSet(:,1));
fill([xi,xi(1)],[f,0],[0.34 0.47 0.71],'FaceAlpha',...
0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax2.Position=[0.1,0.75,0.6,0.15];
ax2.YColor='none';
ax2.XTickLabel='';
ax2.TickDir='out';
ax2.XLim=ax1.XLim;
% Y轴直方图
ax3=axes('Parent',gcf);hold(ax3,'on')
[f,yi]=ksdensity(PntSet(:,2));
fill([f,0],[yi,yi(1)],[0.34 0.47 0.71],'FaceAlpha',...
0.3,'EdgeColor',[0.34 0.47 0.71],'LineWidth',1.2)
ax3.Position=[0.75,0.1,0.15,0.6];
ax3.XColor='none';
ax3.YTickLabel='';
ax3.TickDir='out';
ax3.YLim=ax1.YLim;
4使用方式扩展–与ggplot修饰器联动
ggplot风格修饰器:(点击图片跳转链接)
示例1
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
ax=gca;
ax.XLim=[-1 13];
ax.YLim=[-1 13];
ax=ggplotAxes2D(ax);
CData=density2C(PntSet(:,1),PntSet(:,2),0:0.1:15,0:0.1:15);
scatter(PntSet(:,1),PntSet(:,2),'filled','CData',CData);
是不是瞬间有那味了:
示例2
PntSet1=mvnrnd([2 3],[1 0;0 2],800);
PntSet2=mvnrnd([6 7],[1 0;0 2],800);
PntSet3=mvnrnd([8 9],[1 0;0 1],800);
PntSet=[PntSet1;PntSet2;PntSet3];
ax=gca;
ax.XLim=[-3 13];
ax.YLim=[-3 13];
ax=ggplotAxes2D(ax);
[~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12);
colormap(colorList)
contourf(XMesh,YMesh,ZMesh,10)
以上就是Matlab绘制散点密度图的教程详解的详细内容,更多关于Matlab散点密度图的资料请关注编程学习网其它相关文章!
沃梦达教程
本文标题为:Matlab绘制散点密度图的教程详解


猜你喜欢
- Easyx实现扫雷游戏 2023-02-06
- Qt计时器使用方法详解 2023-05-30
- C++ 数据结构超详细讲解顺序表 2023-03-25
- C语言手把手带你掌握带头双向循环链表 2023-04-03
- c++ const 成员函数,返回一个 const 指针.但是返回的指针是什么类型的 const? 2022-10-11
- 详解C语言中sizeof如何在自定义函数中正常工作 2023-04-09
- C语言详解float类型在内存中的存储方式 2023-03-27
- ubuntu下C/C++获取剩余内存 2023-09-18
- 我应该为我的项目使用相对包含路径,还是将包含目录放在包含路径上? 2022-10-30
- C语言qsort()函数的使用方法详解 2023-04-26