这篇文章介绍了PostgreSQL实现按年、月、日、周、时、分、秒分组统计的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
按年查询
select to_char(date::DATE, 'YYYY') as year,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by year order by year
按月查询
select to_char(date::DATE, 'YYYY-MM') as month,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by month order by month
按周查询
select to_char(date::DATE-(extract(dow from date::TIMESTAMP)-1||'day')::interval, 'YYYY-mm-dd') week,
sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by week order by week
按天查询
select to_char(date::DATE, 'YYYY-MM-DD') as day,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by day order by day
按小时查询
select to_char(date::DATE, 'YYYY-MM-DD HH24') as hour,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by hour order by hour
按分钟查询
select to_char(date::DATE, 'YYYY-MM-DD HH24:MI ') as minute,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by minute order by minute
按秒查询
select to_char(date::DATE, 'YYYY-MM-DD HH24:MI:SS ') as second,sum(shares) as shares, sum(visits) as visits
from database_table
where date >= '2019-01-01' and date <= '2020-01-01' group by second order by second
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程学习网。
沃梦达教程
本文标题为:PostgreSQL实现按年、月、日、周、时、分、秒的分组统计


猜你喜欢
- SQLSERVER调用C#的代码实现 2023-07-29
- redis清除数据 2023-09-13
- 搭建单机Redis缓存服务的实现 2023-07-13
- Oracle 删除大量表记录操作分析总结 2023-07-23
- 基于Python制作一个简单的文章搜索工具 2023-07-28
- MySQL8.0.28安装教程详细图解(windows 64位) 2023-07-26
- Numpy中如何创建矩阵并等间隔抽取数据 2023-07-28
- 在阿里云CentOS 6.8上安装Redis 2023-09-12
- Mongodb启动报错完美解决方案:about to fork child process,waiting until server is ready for connections. 2023-07-16
- SQL Server 2022 AlwaysOn新特性之包含可用性组详解 2023-07-29