字符串匹配存在的问题Python中在一个长字符串中查找子串是否存在可以用两种方法:一是str的find()函数,find()函数只返回子串匹配到的起始位置,若没有,则返回-1;二是re模块的findall函数,可以返回所有匹配到的子...
                
            字符串匹配存在的问题
Python中在一个长字符串中查找子串是否存在可以用两种方法:一是str的find()函数,find()函数只返回子串匹配到的起始位置,若没有,则返回-1;二是re模块的findall函数,可以返回所有匹配到的子串。
但是如果用findall函数时需要注意字符串中存在的特殊字符
蛮力法字符串匹配:
将模式对准文本的前m(模式长度)个字符,然后从左到右匹配每一对对应的字符,直到全部匹配或遇到一个不匹配的字符。后一种情况下,模式向右移一位。
代码如下:
def string_match(string, sub_str): 
 # 蛮力法字符串匹配 
 for i in range(len(string)-len(sub_str)+1): 
  index = i  # index指向下一个待比较的字符 
  for j in range(len(sub_str)): 
   if string[index] == sub_str[j]: 
    index += 1 
   else: 
    break 
   if index-i == len(sub_str): 
    return i 
 return -1 
if __name__ == "__main__": 
 print(string_match("adbcbdc", "dc")) 
最坏情况下,该算法属于Θ(nm),事实上,该算法的平均效率比最差效率好得多。事实上在查找随机文本的时候,其属于线性的效率Θ(n)。
Horspool算法:
Horsepool算法是Boyer-Moore算法的简化版本,这也是一个空间换时间的典型例子。算法把模式P和文本T的开头字符对齐,从模式的最后一个字符开始比较,如果尝试比较失败了,它把模式向后移。每次尝试过程中比较是从右到左的。
在蛮力算法中,模式的每一次移动都是一个字符,Horspool算法的核心思想是利用空间来换取时间,提升模式匹配窗口的移动幅度。与蛮力算法不同的是,其模式的匹配是从右到左的,通过预先算出每次移动的距离并存于表中。
代码如下:
__author__ = 'Wang' 
from collections import defaultdict 
def shift_table(pattern): 
 # 生成 Horspool 算法的移动表 
 # 当前检测字符为c,模式长度为m 
 # 如果当前c不包含在模式的前m-1个字符中,移动模式的长度m 
 # 其他情况下移动最右边的的c到模式最后一个字符的距离 
 table = defaultdict(lambda: len(pattern)) 
 for index in range(0, len(pattern)-1): 
  table[pattern[index]] = len(pattern) - 1 - index 
 return table 
def horspool_match(pattern, text): 
 # 实现 horspool 字符串匹配算法 
 # 匹配成功,返回模式在text中的开始部分;否则返回 -1 
 table = shift_table(pattern) 
 index = len(pattern) - 1 
 while index <= len(text) - 1: 
  print("start matching at", index) 
  match_count = 0 
  while match_count < len(pattern) and pattern[len(pattern)-1-match_count] == text[index-match_count]: 
   match_count += 1 
  if match_count == len(pattern): 
   return index-match_count+1 
  else: 
   index += table[text[index]] 
 return -1 
if __name__ == "__main__": 
 print(horspool_match("barber", "jim_saw_me_in_a_barbershopp")) 
显然,Horspool算法的最差效率属于属于Θ(nm)。在查找随机文本的时候,其属于线性的效率Θ(n)。虽然效率类型相同,但平均来说,Horspool算法比蛮力算法快很多。
总结
以上就是本文关于Python实现字符串匹配算法代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
Python实现调度算法代码详解
Python算法之图的遍历
Python编程实现蚁群算法详解
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
本文标题为:Python实现字符串匹配算法代码示例_python_脚本之家
				
        
 
            
        - python线程池ThreadPoolExecutor与进程池ProcessPoolExecutor 2023-09-04
 - Python实现将DNA序列存储为tfr文件并读取流程介绍 2022-10-20
 - python中列表添加元素的几种方式(+、append()、ext 2022-09-02
 - Python之路-Python中的线程与进程 2023-09-04
 - CentOS7 安装 Python3.6 2023-09-04
 - Python 保存数据的方法(4种方法) 2023-09-04
 - 在centos6.4下安装python3.5 2023-09-04
 - Python Pandas如何获取和修改任意位置的值(at,iat,loc,iloc) 2023-08-04
 - python中defaultdict用法实例详解 2022-10-20
 - windows安装python2.7.12和pycharm2018教程 2023-09-03
 
						
						
						
						
						
				
				
				
				